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Abstract. We prove that the curve 3x3 +4y3 +5z3 = 0 does not satisfy the local-global principle, i.e. it
has a nontrivial solution in R and Qp for all primes p, but it has no nontrivial solution in Q, and introduce

the ideas to show that neither does the family of curves 5x3 + 9y3 + 10z3 + 12
(

t2+82
t2+22

)3
(x + y + z)3 = 0.

1. Introduction

The local-global principle, also called the Hasse principle, is the idea that if a diophantine equation
has a solution locally “for all the possible definitions of local”, then it has a solution globally. As a
more concrete example, we can say that a curve satisfies the local-global principle if the fact that it has
solutions in Qp for all primes p ≤ ∞ implies that it also has solutions in Q. Here, the solutions in the
completions Qp are the local solutions, and the solution in Q is the global solution. We have already seen
an example of this. Namely, the Hasse-Minkowski Theorem.

Theorem 1.1 (Hasse-Minkowski). If a, b, c ∈ Q, the equation ax2 + by2 + cz2 = 0 has nontrivial solutions
in Q if and only if it has nontrivial solutions in Qp for all primes p ≤ ∞.

However, this remarkable principle does not always hold in general, as one’s fear might have expected.
In particular, we are going to show that the curve 3x3 + 4y3 + 5z3 = 0 does not satisfy the local-global
principle. This curve is called Selmer’s example, as Ernst Selmer proved in 1954 that this curve has
a nontrivial solution in R and Qp for all primes p, but it has no nontrivial solution in Q. Our main
inspiration is Conrad’s paper [1].

First, we use Hensel’s lemma to show that this equation has a nontrivial solution in Qp for each prime
p. The case p = ∞ is clearly true. Then, we use algebraic number theory show that this equation does
not have any solution in Q.

Finally, we show the main ideas in the proof of the fact that the family of curves 5x3 + 9y3 + 10z3 +
12

(
t2+82
t2+22

)3
(x + y + z)3 = 0 does not satisfy the local-global principle either. This was proven by Bjorn

Poonen in [2] for the sake of giving an explicit family of curves violating this principle. In fact, it was
already known that several curves do not satisfy this principle, but finding an explicit family of examples
was more challenging.

2. Local solutions to Selmer’s Example

Let us show that Selmer’s example, the curve 3x3 + 4y3 + 5z3 = 0, has a solution in all the completions
of Q, namely R and Qp for all primes p < ∞. We are going to divide the proof in four cases: a solution
in R, a solution in Q3, a solution in Q5, and a solution in Qp, for p ̸= 3, 5, ∞.

First, let us show that there is a solution in R. In fact, this is not hard to do. Take, for example,
(x, y, z) =

(
− 3

√
4
3 , 1, 0

)
. This clearly works. To show that there is a solution in Qp for p < ∞, we are

going to use the following version of Hensel’s lemma:

Lemma 2.1 (Hensel’s lemma). Let f ∈ Zp[x], and suppose |f(a)|p < |f ′(a)|2p for some a ∈ Zp. Then,
there exists some b ∈ Zp such that f(b) = 0.
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A proof of this version of Hensel’s lemma can be found in [3].
Now, let us show our curve has a solution in Q3. Consider the function f(y) = 4y3 − 5, with derivative

f ′(y) = 12y2. Note that, for a = 2,

|f(a)|3 = |27|3 = 3−3 < (3−1)2 = |48|23 = |f ′(a)|23(2.1)

Thus, by Hensel’s lemma, there exists a b ∈ Z3 ⊆ Q3 such that 4b3 − 5 = 0. Hence, (x, y, z) = (0, b, −1) is
a solution for Selmer’s example in Q3:

3x3 + 4y3 + 5z3 = 0 + 4b3 − 5 = 0(2.2)

Let us show our curve also has a solution in Q5. If f(y) = 4y3 + 3, with derivative f ′(y) = 12y2, note
that, for a = 2,

|f(a)|5 = |35|5 = 5−1 < 12 = |48|25 = |f ′(a)|25(2.3)

Thus, by Hensel’s lemma, there exists a b ∈ Q5 such that 4b3 + 3 = 0. Hence, (x, y, z) = (1, b, 0) is a
solution in Q5.

Finally, it remains to show there is also a solution for Qp with p ̸= 3, 5, ∞. Assume p is none of these
primes. We will use the following lemma.

Lemma 2.2. Let (Z/pZ)×3 be the set of cubes of (Z/pZ)×. If p ≡ 1 mod 3, (Z/pZ)×3 is a subgroup of
(Z/pZ)× of index 3, and if p ̸≡ 1 mod 3, then (Z/pZ)×3 = (Z/pZ)×.

Proof. As (Z/pZ)× is a cyclic group of order p − 1, there exists an element g of order p − 1 generating
the group. Hence, as ggcd(3,p−1) is a generator for (Z/pZ)×3, we get the desired result. □

Now, if 3 is a cube mod p, i.e. a3 = 3 mod p, consider the function f(x) = x3 − 3. By Hensel’s lemma,
as |f(a)|p < |f ′(a)|2p, we get b ∈ Zp such that b3 − 3 = 0, so

( 1
b , 1, −1

)
is a solution in Qp for Selmer’s

example.
On the other hand, if 3 is not a cube mod p, by Lemma 2.2 the only possibility is that p ≡ 1 mod 3,

and that

(Z/pZ)/(Z/pZ)×3 = {(Z/pZ)×3, 3(Z/pZ)×3, 9(Z/pZ)×3}(2.4)

because as 3 is not a cube, 1, 3, 9 belong to distinct residue classes. Thus, depending on which residue
class 5 mod p belongs to, we have three cases. If 5 ≡ c3 mod p for some p, considering a = c and
f(x) = x3 − 5, by Hensel’s lemma, there exists b ∈ Zp such that b3 − 5 = 0, so (−b, b, −1) is a solution in
Qp for Selmer’s example. If 5 ≡ 3c3 mod p for some p, considering a = c and f(x) = 3x3 − 5, by Hensel’s
lemma, there exists b ∈ Zp such that 3b3 − 5 = 0, so (b, 0, −1) is a solution in Qp for Selmer’s example.
Finally, if 5 ≡ 9c3 mod p for some p, considering a = 3c and f(x) = x3 − 15, by Hensel’s lemma, there
exists b ∈ Zp such that b3 − 15 = 0, so (3b, 5, −7) is a solution in Qp for Selmer’s example:

3(3b)3 + 4(5)3 + 5(−7)3 = 81b3 + 500 − 1715 = 1215 − 1215 = 0(2.5)

Hence, this concludes our prove that the curve 3x3 + 4y3 + 5z3 = 0 has local solutions in Qp for all p ≤ ∞.

3. No global solutions to Selmer’s Example

Now, let us prove that Selmer’s example does not have any rational solution apart from (0, 0, 0). First,
note that the curve 3x3 + 4y3 + 5z3 = 0 is equivalent to the curve X3 + 6Y 3 = Z3. Indeed, by multiplying
both sides of Selmer’s example by 2 and rearranging, we get

(2y)3 + 6x3 = 10(−z)3(3.1)
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so we can make the substitution X = 2y, Y = x, and Z = −z. Also, as the resulting equation is still
homogeneous, by multiplying everything by a suitable integer N3, we can get rid of the denominators,
and thus assume without loss of generality that X, Y , and Z are integers. Furthermore, we can also
divide everything by gcd(X, Y, Z), so we can assume without loss of generality that X, Y, Z are relatively
prime. Thus, our problem is equivalent to showing that the equation

X3 + 6Y 3 = Z3(3.2)

where X, Y , and Z are integers with gcd(X, Y, Z) = 1 has no solutions apart from (0, 0, 0). Our strategy
will be to consider the prime factorization of the ideals of both sides of equation (3.2) in Z[ 3

√
6]. In order

to do this, we will invoke several claims. We will only prove some of them, but the complete proof of all
can be found in [1]. First, if we let 3

√
6 = α, we can factor (3.2) as

(X + Y α)(X2 − XY α + Y 2α2) = 10Z3(3.3)

Claim 3.1. Z[α] is the ring of integers of Q(α).

Proof. Note that
disc(Z[ 3

√
6]) = −27 · 62 = [OQ( 3√6) : Z[ 3

√
6]]2 disc(OQ( 3√6))

From here, [OQ( 3√6) : Z[ 3
√

6]]2 divides −27 · 62 = −35 · 22, so we must have that [OQ( 3√6) : Z[ 3
√

6]] divides
32 · 2 = 18. Now, as the polynomial T 3 − 6 is Eisenstein in 2 and 3, it follows that neither 2 nor
3 divide [OQ( 3√6) : Z[ 3

√
6]]. However, the only positive divisor of 18 not divisible by 2 or 3 is 1, so

[OQ( 3√6) : Z[ 3
√

6]] = 1, and thus OQ( 3√6) = Z[ 3
√

6] as desired. □

By Claim 3.1, we can pass from the equation of elements (3.3) to the equation of ideals

(X + Y α)(X2 − XY α + Y 2α2) = (10)(Z)3(3.4)

Claim 3.2. We can factor the ideal (10) as (10) = p2p5p25

Proof. First, we factor (10) as (10) = (2)(5). It remains to factor (2) and (5). For this, recall that
Z[ 3

√
6] ∼= Z[T ]/(T 3 − 6), so the factorization of p in Z[ 3

√
6] matches the factorization of T 3 − 6 mod p.

Note that T 3 − 6 factors as T 3 mod 2 and factors as (T − 1)(T 2 + T + 1) mod 5. Hence, (2) factors as p3
2

and (5) factors as p5p25, as desired. □

Claim 3.3. (X + Y α) = p2p5b
3 = (α − 1)(α − 2)b3 for some ideal b.

Sketch. Since there are the unique prime ideals of norm 2 and 5, we have that p2 = (α − 2) and
p5 = (α − 1). Now, from (3.4) and Claim 3.2, after some work with ideals, we can deduce that p2 and p5

divide (X + Y α).

Claim 3.4. Z[α] is a principal ideal domain.

Sketch. This is equivalent to proving that Q(α) has class number 1. Note that the Minkowski bound for
Q(α) is (

4
π

)r2
n!
nn

√
| disc(Z[ 3

√
6])| = 4

π
· 6

27
√

27 · 62 = 16
√

3
π

< 9

Thus, it suffices to check that the ideals with norm at most 8 are principal.

Claim 3.5. The units if Z[α] modulo units cubes are of the form (1 − 6α + 3α2)k for k = 0, 1 or 2.

Proof. As r1 = r2 = 1 for Q(α), by Dirichlet’s unit theorem, it follows that Z[α]× is generated by
1 + 1 − 1 = 1 element. In particular, it follows that Z[α]×/Z[α]×3 ∼= Z/3Z. Thus, any unit that is not a
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cube will be a generator for the group of units modulo cubes. In particular, consider the unit 1 − 6α + 3α2.
We can verify this is a unit because (2) = p3

2 = (α − 2)3, α − 2 has norm 2, and

(α − 2)3

2 = −(1 − 6α + 3α2)

Furthermore, it is not a cube because it is not a cube mod 7. Indeed, p7 = (α + 1) and Z[α]/p7 ∼= Z/(7),
so α ≡ −1 mod 7, but then

1 − 6α + 3α2 ≡ 1 + 6 + 3 ≡ 3 mod 7

and 3 is not a cube mod 7. Hence, 1 − 6α + 3α2 is a generator for Z[α]×/Z[α]×3, so all the units modulo
cubes have the form (1 − 6α + 3α2)k for k = 0, 1 or 2, as desired. □

Now, by Claim 3.3 and Claim 3.4, we can write (X + Y α) as (X + Y α) = (α − 1)(α − 2)(β)3. Now, as
all of these are principal ideals, from this ideal equation we can recover the following equation of elements,
where u ∈ Z[α]×:

X + Y α = (α − 1)(α − 2)β3u(3.5)

Furthermore, as 1 − 6α + 3α2 = (2−α)3

2 , by Claim 3.5, we can rewrite this as

X + Y α = (α − 1)(α − 2)β3
(

(2 − α)3

2

)k

v3 = (α − 1)(α − 2)(βv(2 − α)k)3

2k
(3.6)

for some v ∈ Z[α]×. Now, by making γ = βv(2 − α)k and multiplying both sides of (3.6) by 2k, we get

2kX + 2kY α = (α − 1)(α − 2)γ3(3.7)

As γ ∈ Z[α], we can write it as γ = A + Bα + Cα2 for some A, B, C ∈ Z. Plugging this into (3.7) and
comparing the coefficients of α2, we get that

0 = A3 + 6B3 + 36C3 + 36ABC − 9(A2B + 6AC2 + 6B2C) + 6(AB2 + A2C + 6BC2)(3.8)

Now, note that all the terms in the right hand side, except possibly A3, are multiples of 3. Thus, we
must have that 3 | A3, that is, 3|A. Now, if we plug A = 3A′, we now get that all the terms, except
possibly 6B3, are multiples of 9. This implies that 3 | B. Similarly, if we plug B = 3B′, we see that all
the terms, except possibly 36C3, are multiples of 27, so we must have that 3 | C. Thus, we have gotten
that 3 | A, B, C, so dividing everything by 27, we get the same equation as (3.8), but with A′, B′, C ′

instead of A, B, C. Repeating this argument, we get that 3N | A, B, C for all N , so A = B = C = 0.
However, plugging this in (3.7), we get that X + Y α = 0, which is possible if and only if X = Y = 0.
Hence, we get that the only solution for (3.2) is (0, 0, 0), which implies that Selmer’s example does not
have any nontrivial solution in Q, as desired.

Remark 3.6. For Claim 3.5, 1 − 6α + 3α2 is actually a generator of the whole Z[α]×. However, proving
this requires more effort, and Claim 3.5 was enough for our goal.

Remark 3.7. Finding exceptions to the local-global principle is not an easy task. In general, if there is
a simple way to show that an equation does not have rational solutions, it is usually via an argument
mod p. However, failure mod p will precisely imply that there is no solution in Qp, so this is not an
exception to the Hasse principle. Take, for example, the cubic equation x3 + 2y3 + 4z3 = 0. In [5], it was
shown through a simple argument that there were no solutions in Q because of failure mod 2, but this
also implies there is no solution in Q2.

Remark 3.8. With similar arguments, we can also prove that the curves x3 + 5y3 + 12z3, x3 + 4y3 + 15z3,
x3 + 3y3 + 20z3, and x3 + 3y3 + 22z3 are exceptions to the local-global principle.
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Figure 1. 4y3 = −3x3 − 5

4. A family of curves that do not satisfy the local-global principle

As we saw in the previous sections, the curve 3x3 + 4y3 + 5z3 = 0 is an exception to the Hasse principle.
However, we now sketch the construction of an explicit family of curves that do not satisfy the local-global
principle. Namely, we will show that the family of curves

5x3 + 9y3 + 10z3 + 12
(

t2 + 82
t2 + 22

)3

(x + y + z)3 = 0(4.1)

does not satisfy the local-global principle. As before, showing that this has a solution in R is not hard.
Indeed, if we fix y and z, the curve is a cubic polynomial in x, so it has a real solution. By perturbing y, z

if necessary, we can ensure this solution is not (0, 0, 0). Now, we proceed to prove that it has solutions
in Qp for all p < ∞. In order to do this, we will invoke two lemmata and a claim. The proofs of these
results can be found in [2].

Lemma 4.1. Let V be a smooth cubic surface in P3 over an algebraically closed field k. Let L be a line
in P3 intersecting V in exactly 3 points. Let W be the blowup of V at these points. Let W → P1 be the
fibration of W by plane cubics induced by the projection P3\L → P1 from L. Assume that some fiber of
π : W → P1 is smooth. Then at most 12 fibers are singular, and if there are exactly 12, each of them is a
nodal plane cubic.

Sketch. This result can be proven using the Euler characteristic

χ(V ) =
2 dim V∑

i=1
(−1)i dimFl

Hi
ét(V,Fl)

where l is a prime distinct from the characteristic of k.

Lemma 4.2. If F (x, y, z) ∈ Fp[x, y, z] is a nonzero homogeneous cubic polynomial such that F does not
factor completely into linear factors over Fp, then the subscheme X of P2 defined by F = 0 has a smooth
Fp-point.

Proof. First, note that the polynomial has to be squarefree, as otherwise it would factor completely. From
this, we get that X is reduced. If X is a smooth cubic curve, as in [5], we can show that it has genus 1.
Thus, by the Hasse bound, there is at least one Fp-point. Now, if X is not smooth, by enumerating the
possibilities as in [2], we get X must be a nodal or cuspidal cubic or a union of a line and a conic. It
follows that the Galois action on components is trivial because when there is more than one component,
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these have different degrees. Thus, there is an open set of X isomorphic to P1 with at most two geometric
points deleted. However, #P1(Fp) ≥ 3, so there is still at least one Fp-point on X, as desired. □

Let us show that our family of curves does not satisfy the local-global principle. Consider the cubic
surface

V : 5x3 + 9y3 + 10z3 + 12w3 = 0(4.2)

in P1. It is a result of Cassels and Guy [4] that V does not satisfy that local-global prinicple. That is, it
has no solutions in Q, but it has a solution in Qp for all p < ∞. Now, consider the line

L : x + y + z = w = 0(4.3)

Their intersection V ∩ L (as a subscheme of L ∼= P1) is defined by

5x3 + 9y3 − 10(x + y)3 = 0(4.4)

As the discriminant of this curve is 242325 = 33 · 52 · 359 ̸= 0, we have that V and L have exactly 3
geometric points of intersection. Note that this remains true in characteristic p for p ̸= 3, 5, 359. Now,
consider the blowup W of V at these intersection points. Explicitly, W ⊆ P3 × P1 is given by the points
((x, y, z, w), (u0, u1)) such that

W : 5x3 + 9y3 + 10z3 + 12w3 = 0(4.5)

u0w = u1(x + y + z)(4.6)

Here, the induced fibration W → P1 is given by the projection to the second factor, namely ((x, y, z, w), (u0, u1)) 7→
(u0, u1). If we define u = w

x+y+z , from the equations (4.5) and (4.6), we get that the fiber Wu above u

can be written as

Wu : 5x3 + 9y3 + 10z3 + 12u3(x + y + z)3 = 0(4.7)

V

Wu

Wu′

Figure 2. The fibers Wu can be thought of as curves in V . (Picture adapted from [6])

Note that u runs over all of P1. However, we will prove that for a particular family of choices of u, the
curves Wu are an exception to the local-global principle. Let us proceed to show this. First, we verify
that the Wu are smooth. By dehomogenizing (4.7), we get

f(x, y) = 5x3 + 9y3 + 10 + 12u3(x + y + 1)3 = 0(4.8)

For f to have a singularity, we must have that

f = ∂f

∂x
= ∂f

∂y
= 0(4.9)
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Now, (4.9) is a system of three equations with three variables x, y, u, so we can solve for u by eliminating
x and y. After doing this, from the calculation done in [2], we get

2062096u12 + 6065760u9 + 4282200u6 + 999000u3 + 50625 = 0(4.10)

That is, Wu has a singular point if and only if u satisfies (4.10). In particular, W0 is a smooth fiber.
Thus, by Lemma 4.1 for k = C, we get that the 12 singular fibers implied by the 12 solutions of (4.10)
are the only singular fibers. Moreover, these singular fibers must be nodal plane cubics. Now, by [2],
the polynomial in (4.10) is irreducible over Q, so it follows that none of this 12 singular points is in Q.
That is, Wu is always smooth for u ∈ P1(Q). Furthermore, we can show that for any prime p that does
not divide the discriminant ∆ of the polynomial (4.10), we have that Wu has a Qp-point. First, by [2],
∆ = 2146 · 392 · 550 · 3594. Now, let us fix a prime p ̸= 2, 3, 5, 359 and a place Q 99K Fp. Note that the
12 singular u-values of P1(Q) reduce to 12 distinct singular u-values in P1(Fp) for the family W → P1

defined by the equations (4.5) and (4.6) over Fp. However, recall that we noted that the fiber W0 is still
smooth in characteristic p, so it follows that, by Lemma 4.1, the fibers W → P1 are all smooth plane
cubics or nodal plane cubics. Hence, by Lemma 4.2 and Hensel’s lemma, we get that Wu has a Qp-point
for all u ∈ P1(Qp). Finally, it remains to show that this is also the case for p = 2, 3, 5, 359.

Claim 4.3. If u ∈ Q satisfies u ≡ 1 mod pZp for p = 2, 3, and 5, and u ∈ Z359, then the fiber Wu has a
point in Qp for all Qp, p < ∞.

Sketch. We use Lemma 4.2 and Hensel’s lemma to prove the existence of Qp-points.
Now, for u, we need a function P1 → P1 that maps P1(Qp) into 1 + pZp for p = 2, 3, and 5 and into

Z359 for p = 359 so that we can apply Claim 4.3. As
(

−22
p

)
= −1 for p = 2, 3, 359, the function

u = 1 + 60
t2 + 22 = t2 + 82

t2 + 22(4.11)

works. Indeed, the denominator will not be 0 for these values and 2, 3 | 60. Now, plugging this into (4.7),
we get

Xt : 5x3 + 9y3 + 10z3 + 12
(

t2 + 82
t2 + 22

)3

(x + y + z)3 = 0(4.12)

which is precisely the family of curves we claimed were an exception for the local-global principle, as
desired.
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